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It is now well established that two distinct types of motion occur in geophysical
turbulence: slow motions associated with potential vorticity advection and fast
oscillations due to inertia–gravity waves (or acoustic waves). Many studies have
theorized the existence of a flow for which the entire motion is controlled by the
potential vorticity (or one ‘master variable’) – this is known as balance. In real
geophysical flows, deviations from balance in the form of inertia–gravity waves or
‘imbalance’ have often been found to be small. Here we examine the extent to which
balance holds in rotating stratified turbulence which is nearly balanced initially.

Using the non-hydrostatic fluid dynamical equations under the Boussinesq
approximation, we analyse properties of rotating stratified turbulence spanning a
range of Rossby numbers (Ro ≡ |ζ |max/f ) and the frequency ratios (c ≡ N/f ) where
ζ is the relative vertical vorticity, f is the Coriolis frequency and N is the buoyancy
frequency. Using a recently introduced diagnostic procedure, called ‘optimal potential
vorticity balance’, we extract the balanced part of the flow in the simulations and
assess how the degree of imbalance varies with the above parameters.

We also introduce a new and more efficient procedure, building upon a quasi-
geostrophic scaling analysis of the complete non-hydrostatic equations. This ‘nonlinear
quasi-geostrophic balance’ procedure expands the equations of motion to second order
in Rossby number but retains the exact (unexpanded) definition of potential vorticity.
This proves crucial for obtaining an accurate estimate of balanced motions. In the
analysis of rotating stratified turbulence at Ro <∼ 1 and N/f � 1, this procedure
captures a significantly greater fraction of the underlying balance than standard
(linear) quasi-geostrophic balance (which is based on the linearized equations about
a state of rest). Nonlinear quasi-geostrophic balance also compares well with optimal
potential vorticity balance, which captures the greatest fraction of the underlying
balance overall.

More fundamentally, the results of these analyses indicate that balance dominates
in carefully initialized simulations of freely decaying rotating stratified turbulence up
to O(1) Rossby numbers when N/f � 1. The fluid motion exhibits important quasi-
geostrophic features with, in particular, typical height-to-width scale ratios remaining
comparable to f/N .

1. Introduction
Fluid motion in the Earth’s atmosphere and oceans, and in other planetary

atmospheres, is subject to strong constraints arising from rotation and stable density
stratification. Over intermediate to large scales rotation and stratification induce
layerwise two-dimensional motion, with relatively weak vertical velocities. Moreover,
the predominant ‘balances’ in the equations of motion are between the Coriolis
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acceleration and the horizontal pressure gradient (geostrophic), and between the
buoyancy and the vertical pressure gradient (hydrostatic). That is, the other terms
in the equations tend to be of secondary importance. This state of affairs is known
generally as ‘balance’, and can extend much further than the simple geostrophic
and hydrostatic (collectively ‘quasi-geostrophic’) balance just described (Hoskins,
McIntyre & Robertson 1985).

A ‘balanced flow’ refers to any flow controlled solely by a single ‘master variable’
(see Charney 1948; Warn et al. 1995; Ford, McIntyre & Norton 2000 and references
therein). Here, as in Dritschel & Viúdez (2003) and Dritschel & Viúdez (2007), we take
the master variable to be the ‘potential vorticity’ (PV), a materially conserved scalar
quantity in the absence of friction and diabatic heating. Then, the balanced flow can be
recovered explicitly from the potential vorticity through a process called ‘PV inversion’
(Hoskins et al. 1985). In PV inversion, all of the dynamical and thermodynamical
fields are recovered by solving diagnostic ‘balance relations’ (such as geostrophic
and hydrostatic) and using the definition of potential vorticity or an approximation
thereof, as in ‘quasi-geostrophic’ theory (cf. Gill 1982).

Balance has been found to be an excellent approximation in rapidly rotating flows
having a small ‘Rossby number’ Ro ≡ |ζ |max/f � 1 and in strongly stratified flows
having a small Froude number Fr ≡ |ωh|max/N � 1 (where ζ and ωh are the vertical
and horizontal vorticity components). Moreover, stratification should be ‘stronger’
than rotation, in the sense that f/N � 1, as observed in the Earth’s atmosphere and
oceans over a broad range of scales. A consequence of this balance is that vertical
motions tend to be much weaker than horizontal motions (Viúdez & Dritschel
2003). Nevertheless, departures from balance appear inevitable. Inertia–gravity waves
(IGWs) – what we call the ‘imbalance’ – can be spontaneously emitted, for instance
in response to evolving vortical features, small-scale convection, or interactions with
topography (Ford et al. 2000; Vanneste & Yavneh 2004; Lane et al. 2004; Viúdez &
Dritschel 2006; Waite & Bartello 2006).

Measuring this imbalance is tricky, and subtle. What constitutes ‘imbalance’ depends
on one’s definition of balance, specifically the choice of the ‘balance conditions’. And,
alas, there is an infinite multiplicity of these (cf. Mohebalhojeh & Dritschel 2001 in
the simplest shallow-water context). Balance appears to lack a precise mathematical
definition. Hence, there is no rigorous, or unambiguous, way of separating a general
nonlinear flow into its balanced and unbalanced parts.

Recently however, a new procedure called ‘Optimal PV (OPV) balance’ (Viúdez &
Dritschel 2004) was introduced to overcome part of this ambiguity by eliminating the
need to choose balance conditions. This procedure obtains balance – or more correctly
minimizes the imbalance – by artificially ramping up the PV anomaly carried by each
fluid particle over a prescribed time period ∆, starting from a state of rest. The
full dynamical equations are used, except for this modification of PV. The practical
difficulty is that one must find, iteratively, the ‘base configuration’ of fluid particles
that evolves into the ‘target configuration’ by the end of the ramp (see § 3.2 below).
If the ramping is done sufficiently slowly (for ∆ exceeding about 3 inertial periods
Tip = 2π/f ), the state of motion at the end of the ramp period exhibits minimal IGW
activity (Viúdez & Dritschel 2004, Dritschel & Viúdez 2007). The procedure is not
perfect as the ‘balance’ depends on a parameter ∆, but the procedure does not enforce
any specific balance conditions. As a result, some of the resulting balance contains a
small amount of imbalance, which cannot be reduced further (see Dritschel & Viúdez
2007 for further details). Nevertheless, OPV balance is a robust procedure permitting
one to assess the degree of balance and imbalance in a wide class of flows.
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OPV balance is one of many procedures available for this purpose. Previous work,
based on the hydrostatic equations (which are already semi-balanced), includes the
‘nonlinear normal mode initialization’ procedure of Machenhauer (1977), Baer (1977),
Baer & Tribbia (1977) and Leith (1980), the ‘slaving’ procedure of Warn et al. (1995)
and Bokhove (1997), and the ‘QG+1’ model of Muraki, Snyder & Rotunno (1999),
to name but a few (see also Vallis 1996 and references therein). Here we introduce
yet another procedure, which however is based on the reformulation of the non-
hydrostatic equations introduced by Dritschel & Viúdez (2003). That reformulation
takes PV and the two horizontal components of the ageostrophic vorticity to be
the prognostic variables, replacing velocity and buoyancy. This reformulation makes
explicit the separation between the leading-order hydrostatic–geostrophic balance and
the departure therefrom. Here, the PV represents the balanced part of the flow and the
ageostrophic vorticity represents the leading-order ‘imbalance’, that is the departure
from thermal wind balance. Moreover, in this reformulation, the governing equations
directly simplify to the quasi-geostrophic (QG) equations in the limit of small Rossby
number Ro � 1.

The new balance procedure, called ‘nonlinear quasi-geostrophic’ (NQG) balance, is
in many ways similar to previous ones: two time derivatives (here on the ageostrophic
horizontal vorticity) are removed from the equations, giving rise to a pair of diagnostic
balance relations (see Bolin 1955, 1956 and Charney 1955, 1962). This filters inertia–
gravity waves (IGWs). What is novel in this context is the use of the unapproximated
form of the (Rossby–Ertel) PV. There is no need to approximate PV to eliminate
IGWs. Of course, since the balance relations are themselves only accurate to O(Ro2),
one might argue that it is consistent to expand the definition of PV to O(Ro2), as in
the QG+1 procedure of Muraki et al. (1999). However, the numerical evidence below
shows that there is a distinct advantage in using the unapproximated form of the PV, as
has been repeatedly demonstrated in the shallow-water context (McIntyre & Norton
2000; Ford et al. 2000; Mohebalhojeh & Dritschel 2000, 2001, 2004; Mohebalhojeh
2002).

In the present work, both OPV and NQG balance, together with linear QG balance,
are compared in simulations of complex rotating stratified turbulence across a range
of Rossby and Froude numbers. The simulations are initiated from a QG one at a
mature state of evolution. Specifically, the initial conditions for the non-hydrostatic
simulations are found by a PV-ramping procedure like that carried out in OPV
balance, to start from a nearly balanced flow. In time, IGWs are excited, and here we
quantify the extent to which the above balance procedures can detect them.

The plan of the paper is as follows. In § 2 we describe the problem set-up, recall the
reformulation of the governing equations, and develop the NQG balance procedure.
Details of the numerical methods and initialization are next provided in § 3. Results
are presented in § 4, first by illustrating the evolution of PV, then by analysing the full,
balanced and unbalanced components of various dynamical fields. Here, the various
balance procedures are compared. The paper finishes with concluding remarks in § 5.

2. Problem formulation
2.1. The non-hydrostatic model

We consider an inviscid incompressible rotating stratified fluid under the Boussinesq
approximation. The latter requires that the density ρ varies weakly from a mean
background value, ρ0, i.e.

ρ(x, t) = ρ0 + �zz + ρ ′(x, t) (2.1)
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where �zz is the mean linear density (�z < 0 is a constant) and ρ ′(x, t) is the anomalous
density. Neglecting terms of O(µ2) where µ =(ρ − ρ0)/ρ0, the non-hydrostatic (NH)
equations become

u̇ + f k × u = −ρ−1
0 ∇Φ + bk, (2.2a)

ḃ + N 2w = 0, (2.2b)

∇ · u = 0, (2.2c)

where u ≡ (u, v, w) is the three-dimensional velocity field, (˙) = D( )/Dt = ( )t +u · ∇( )
denotes the material time derivative (in the rotating frame), Φ is the geopotential,
b ≡ −gρ ′/ρ0 is the buoyancy, g is acceleration due to gravity, and k denotes the
vertical unit vector. N is the mean buoyancy frequency defined by N 2 ≡ −g�z/ρ0.
Here we take the Coriolis (f ) and buoyancy (N) frequencies to be constant.

As in Dritschel & Viúdez (2003) we recast the above set of equations in terms of
variables which represent the leading-order hydrostatic–geostrophic balance and the
departure therefrom in flows with Ro � 1 and f/N � 1. The balanced evolution is
controlled by the (dimensionless) PV,

Π ≡ (k + ω/f ) · (k + ∇b/N2) = 1 +
ζ

f
+

bz

N2
+

ω · ∇b

f N2
, (2.3)

where ω = ∇ × u is the vorticity. The leading-order imbalance is represented by the
horizontal part of the vector A, defined by

A =ω/f + ∇b/f 2 . (2.4)

The horizontal part of A, denoted Ah, is the dimensionless ageostrophic vorticity.
While Ah is here the leading-order imbalance, it generally contains O(Ro2) balanced
motions (see § 2.2 below). The main point is that Ah does not contain any balanced
motions at O(Ro).

In terms of Π and Ah, the flow evolution is governed by conservation of PV, or of
the PV anomaly � ≡ Π − 1,

�̇ = 0, (2.5)

and by the horizontal ageostrophic vorticity equation,

Ȧh = − f k × Ah + (1 − c2)∇hw + f −1ω · ∇uh + c2∇hu · ∇D, (2.6)

where D = −b/N2 is the isopycnal displacement and c ≡ N/f (see Dritschel & Viúdez
2003 for details).

The original ‘primitive’ variables (u, b) are recovered by inverting the definitions of
� and Ah. This is facilitated by introducing a vector potential ϕ ≡ (ϕ, ψ, φ), such
that

A = ∇2ϕ . (2.7)

Then taking the divergence of (2.4) and inverting the Laplacian leads to

D = −c−2∇ · ϕ (2.8)

whereas taking the curl of (2.4) gives

u = −f ∇ × ϕ (2.9)

(assuming all fields have zero domain average and ignoring boundaries). Thus u and
b = −N2D, which are needed to evolve � and Ah, all derive from a single vector
potential ϕ. This reduction occurs because ∇ · u = 0. The horizontal components of ϕ



Balance in non-hydrostatic rotating stratified turbulence 205

are obtained from

ϕh = ∇−2Ah (2.10)

whereas the vertical component is obtained from a double Monge–Ampère equation,

Lqgφ = � + (1 − c−2)Θz − c−2N(ϕ) (2.11)

where Lqg is the QG operator defined by

Lqgφ ≡ φxx + φyy + c−2φzz, (2.12)

Θ ≡ ∇h · ϕh, (2.13)

and

N(ϕ) ≡ ∇(∇ · ϕ) · [∇2ϕ − ∇(∇ · ϕ)]. (2.14)

The main complication of this reformulated set of equations is the above Monge–
Ampère equation, arising from the explicit use of PV. Nevertheless, the set of equations
can be discretized numerically and solved efficiently. The PV is represented as contours
on isopycnal surfaces (surfaces of constant density) and evolved using Contour
Advection (Dritschel & Ambaum 1997; Dritschel & Viúdez 2003).

2.2. Nonlinear QG balance

In this section, we apply quasi-geostrophic (QG) scaling to the reformulated non-
hydrostatic (NH) equations to obtain ageostrophic balanced fields at O(Ro2). The
characteristic space and time scales are

x, y ∼ L, z ∼ H, t ∼ (εf )−1, (2.15)

where here we have introduced ε ≡ |� |max as a PV-based Rossby number, and where
H/L ∼ f/N ≡ c−1. In addition, the characteristic horizontal and vertical velocity scales
are

uh ∼ εf L, w ∼ ε2f L/c (2.16)

while the characteristic isopycnal displacement scale is

D ∼ εL/c. (2.17)

Note that this scaling is equivalent (apart from the definition of Rossby number)
to that used in Muraki et al. (1999, hereafter referred to as ‘MSR99’). However, for
clarity, we do not apply this scaling to non-dimensionalize the equations.

The reformulated equations make it straightforward to generalize QG balance to
include O(ε2) terms. First of all note that the dimensionless ageostrophic vorticity
Ah = O(ε2), because the flow is assumed to be in hydrostatic–geostrophic or ‘thermal
wind’ balance at leading order. We can express this by expanding the vector potential
ϕ ≡ (ϕ, ψ, φ) in ε,

ϕ =ϕ1 + ϕ2 + O(ε3) (2.18)

taking ϕ1 = O(ε), ϕ2 =O(ε2), and by taking ϕ1 = ψ1 = 0. Inserting this expansion into
the NH equations, at O(ε) we obtain the standard (linearly–balanced) QG equations

Lqgφ1 = �, (2.19a)

�̇ = 0, (2.19b)

u1 = −f φ1y, v1 = f φ1x, (2.19c)
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for constant f and N . At O(ε2), there is an infinite multiplicity of conditions which can
be imposed to close the system of equations (see Mohebalhojeh 2002, in the related
shallow-water context). This multiplicity arises because we use the exact definition of
PV in lieu of (2.19a) (see § 2.3 below). We thus have to add another equation to the
system to close it. Here, we require that the linear part of the PV vanish at O(ε2),
i.e. ζ2/f + b2z/N

2 = 0, cf. (2.3). We have tried a variety of other conditions, such as
φ2 = 0, but we have found that this condition captures the greatest proportion of
the balance (consistent with the findings in Mohebalhojeh 2002 in the shallow-water
context). With this condition, equations (2.6) and (2.11) reduce to

c2Lqgϕ2 + (1 − c2)∇Θ2 = S (2.20)

where Θ2 ≡ ∇h · ϕh2 and the vector S is defined by S ≡ (Sϕ, Sψ, Sφ) where

Sϕ = −2Jyz(φ1x, φ1y), (2.21a)

Sψ = −2Jzx(φ1x, φ1y), (2.21b)

Sφ = 0, (2.21c)

and where Jyz(a, b) = aybz − azby denotes the Jacobian (Jzx(a, b) is analogous). The
vertical component of (2.20) together with (2.21c) expresses the condition ζ2/f +
b2z/N

2 = 0.
In a triply periodic domain, these ‘Nonlinear QG’ (NQG) equations are solved

most readily in spectral space to give

ϕ̂2 = F̂[c2Ŝϕxx + Ŝϕyy + Ŝϕzz + (c2 − 1)Ŝψxy], (2.22a)

ψ̂2 = F̂[c2Ŝψyy + Ŝψzz + Ŝψxx + (c2 − 1)Ŝϕxy], (2.22b)

φ̂2 = F̂K2(1 − c2)(ϕ̂2xz + ψ̂2yz), (2.22c)

where χ̂ denotes the spectral transform of a field χ , K is the three-dimensional

wavenumber defined by K2 ≡ k2 + l2 + m2, and F̂ =1/[K2(c2(k2 + l2) + m2)]. Thus
knowing the O(ε) fields satisfying (2.19), we can solve for the next order using (2.22).

The analysis outlined above is similar to that carried out in MSR99, except that
they effectively expand the definition of PV (see § 2.3 below) and consequently have a
non-zero source term Sφ . Also, in their approach they use a Helmholtz decomposition
with the potentials (F, G, Φ) related to the potentials we use by F = −f cψ , G = f cϕ

and Φ = f φ. Furthermore they work in an isotropic domain, thus going from their
procedure to ours ∇2 → c2Lqg . There are extra terms involving Θ2 in our equations
which do not appear in the QG+1 equations. These terms arise because of differences
in the definition of the buoyancy. They define the buoyancy as b = N2(ϕx +ψy)+f 2φz

whereas we take b = f 2∇ · ϕ. It can be shown with some manipulation that both the
NQG and QG+1 potentials yield the same diagnostic relation for the velocity field,
i.e.

c2Lqgu2 = −f ∇ × S (2.23)

(though with a different source S). However, our choice of buoyancy has the
advantage of allowing us to write the equations in a coordinate-independent form.

2.3. Iterative method

The above analysis is incomplete if we insist on using the exact, unexpanded definition
of PV. In this case, we replace the QG PV inversion equation (2.19a) by the exact,
nonlinear Monge–Ampère equation (2.11). However, (2.11) provides φ, not φ1. The
latter is recovered by the difference φ1 = φ − φ2 (correct to O(ε2)), where φ2 is found
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from the vertical component of (2.20) or equivalently from (2.22c). This implies that
the equations at O(ε) (2.19a) and O(ε2) (2.20) are in fact coupled nonlinearly.

In practice, we solve these coupled equations by iteration. For the first iteration,
n= 1, we set both the first- and second-order fields to zero (ϕn−1 = ϕ0 = ϕ0

1 + ϕ0
2 = 0)

and then proceed as follows:

(1) invert the PV (2.11) using ϕn−1 in N(ϕ) and in Θ to obtain φn;
(2) obtain an approximation to φn

1 from φn
1 = φn − φn−1

2 ;
(3) use φn

1 in (2.21) and (2.22) to obtain ϕn
2;

(4) return to (1) if |φn
1 + φn

2 − φn| is greater than a prescribed tolerance.

Hence, starting with � at the time to be diagnosed, step (1) provides φ, which in the
first instance is equal to φ1 (since both the first- and second-order fields are initially
zero). From φ1, all the next-order fields can be calculated from step (3). Using these
fields in (1) again gives a better approximation to the balanced fields to O(ε2). Then
(2) gives an improved approximation to φ1 and this is used in (3) to calculate the
next-order fields. In practice, we iterate until the pointwise difference in φn and φn

1 +φn
2

is less than 10−7. Note that, upon convergence, φ1 + φ2 = φ.
In MSR99 (see also Rotunno, Muraki & Snyder 2000) they apply a similar technique

in their QG+1 balance model, but in effect only carry out one iteration of the above
cycle followed by step (1) again. They first set the fields to zero and do the inversion
for φ1 as in (1) and (2) above. Then, they use φ1 in (3) to compute the horizontal part
of ϕn

2, for n = 1. Finally, they repeat step (1) to obtain φ to O(ε2), except they do not
include ϕn

2 in the right-hand side of (2.11) since this would contribute at O(ε3). Other
differences arise from our inclusion of non-hydrostatic terms, which are expected to
be small for c � 1.

In § 4.1 we apply the NQG procedure using different numbers of iterations.
Substantial gains in accuracy are found with repeated iteration.

3. Simulations
3.1. Initialization and parameter settings

Several simulations were conducted to examine the nature of balance in rotating
stratified turbulence at different Rossby numbers. We first conducted a QG simulation
(corresponding to ε → 0) which began with an ‘isotropic’ PV field (after stretching the
vertical coordinate by N/f ) consisting of spheres of QG PV q = ± 4π. This implies a
characteristic vortex rotation period of Teddy = 1 (note: the Rossby number does not
enter explicitly in the standard QG equations). Initially, an equal number and volume
of cyclonic and anticyclonic vortices were placed randomly (without overlapping) in
the domain. Their sizes were picked from a frequently observed power-law number
density distribution (Reinaud, Dritschel & Koudella 2003). Figure 1(a) shows the
initial configuration with 500 vortices of each sign. The ratio between the volume of
the largest vortex and the volume of the smallest vortex is 20.

The QG and NH simulations were carried out using identical parameter settings
in a triply periodic cube (in stretched coordinates x, y and Nz/f ), with a basic grid
resolution of 128×128×128. Four times as many layers were used to represent the PV
on isopycnal surfaces, and for consistency a grid four times finer in each horizontal
direction was used in converting the PV contours to gridded PV values, needed in
the rest of the algorithm. Contour surgery, which limits the growth in complexity of
the contours, was applied at a twentieth of the horizontal grid resolution used to
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(a) (b)

Figure 1. Distribution of QG PV anomaly q at times (a) t = 0 and (b) t = 40. The view is
orthographic, at an angle of 60◦ from the vertical, and from the (y, z)-plane. From this view
we can see the top and front faces of the domain and a white line indicates where these faces
intersect. Cyclonic vortices are lightly shaded while anticyclonic vortices are darkly shaded.

represent ϕ, u, etc. (see Dritschel & Viúdez 2003 for further details of these standard
parameter settings).

The QG simulation was run for 60 time units, well into the decaying stage (peak
contour complexity occurs around 20 time units). The QG PV field q at time t = 40
(see figure 1b) was then used to initialize the simulations using the NH equations at
finite Rossby number (henceforth we redefine the t = 40 state in the QG simulation
as the initial state, i.e. ‘t = 0’). We set the PV anomaly � =Π − 1 by linearly scaling
the QG PV anomaly, i.e. � = εq/4π, for a given ‘Rossby number’ ε. To obtain nearly
balanced initial values for the ageostrophic horizontal vorticity Ah, we used a time
ramping procedure (Dritschel & Viúdez 2003) like in OPV balance. Starting from a
state of rest, the PV anomaly was slowly ramped up from 0 to � over 10 inertial
periods, Tip = 2π/f , while integrating the full dynamical equations for Ah, cf. (2.6).
However, unlike in OPV balance (see below), for simplicity we fixed the PV contours
(or fluid particles) while ramping.

The NH simulations were then integrated forwards over the equivalent of 20
QG time units, in six cases: for two frequency ratio values c ≡ N/f = 10 and 100,
and for three PV-based Rossby numbers ε = 0.25, 0.5 and 0.75. To ensure that the
inertia–gravity waves, having frequencies between f and N , are well resolved in time,
we used an explicit third-order Adams–Bashforth time-stepping procedure with a
time step �t = 0.1Tbuoy , where Tbuoy = 2π/N is the buoyancy period. Also, to control
the generation of grid-scale noise during the time integration, a weak bi-harmonic
hyperdiffusion was added to the Ah tendencies. The maximum damping rate (on the
highest wavenumber in spectral space) was taken to be 1 + 10ε4 per inertial period.
As demonstrated in Dritschel & Viúdez (2003), this damping rate is much less than
that required in a pure pseudo-spectral simulation.
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3.2. Balance diagnosis procedures

After conducting the simulations, ‘balance’ was diagnosed using a variety of
procedures: linear QG, OPV, and NQG balance. These are compared below in § 4.3.

Linear QG balance corresponds to the first-order QG equations (2.19) alongside
the ω-equation (the vertical component of equation (2.23)) for the vertical velocity
field w (Waite & Bartello 2006; Viúdez & Dritschel 2003).

OPV balance is based on a simpler procedure first introduced by Dritschel &
Viúdez (2003) and used here to set up the initial fields. Briefly, all dynamical fields are
first set to zero (ϕ = 0, � =0); then, the NH equations are evolved over a fictitious
ramp time τ , during which the PV anomaly is multiplied by a ramp function T (τ )
which varies smoothly from 0 to 1 from the beginning (τ = 0) to the end (τ = ∆)
of the ramp period. The ramp function used is T (τ ) ≡ 1

2
[1 − cos πτ/∆]. The PV

is not advected by the flow, but held fixed in space. While this procedure tends to
generate nearly balanced fields, fixing the PV in space is inconsistent with material
conservation of PV. OPV balance (Viúdez & Dritschel 2004) relaxes this constraint.
However, one must then find the positions of fluid particles (or material contours)
which end up, after ramping, in the ‘correct’ positions, i.e. corresponding to the PV
field being diagnosed. Practically, one has to make a guess for this ‘base configuration’
at the beginning of the ramp, then iterate until convergence. Iterations correspond
to backward and forward time integrations in which the IGWs are removed at the
beginning of the ramp and PV is restored at the end of the ramp. The balanced flow
obtained is a solution of the IGW-permitting dynamics in which the amplitude of
IGWs is minimal. In previous studies, OPV balance has been found to be an effective
means of identifying and quantifying IGWs (Viúdez & Dritschel 2006; Dritschel &
Viúdez 2007). Here we apply this procedure using 5 loops, 3 forward and 2 backward
integrations, over a ramp period of ∆ =5Tip . The results are not sensitive to ∆ for
∆ > 3Tip (see Dritschel & Viúdez 2007).

NQG balance solves equations (2.20) to directly obtain balanced fields to O(ε2).
We apply this procedure using the iterative technique introduced in § 2.3. The NQG
procedure is much more efficient than the OPV procedure (≈ 200 times faster), as
OPV balance relies on a repeated time integration of the NH equations over the
ramp period. However, in principle, OPV balance is not limited to a particular order
of accuracy, since OPV balance does not impose balance relations. We expect it to
be the most ‘accurate’ overall, in the sense of ascribing the greatest proportion of a
flow to balanced dynamics. Of course, in a flow dominated by IGWs, OPV balance
may not be significantly more accurate than simpler procedures. But that is not the
situation being considered here. Our aim is to understand the degree to which the
PV alone may control – through some underlying balance – fluid motion in rotating
stratified turbulence.

4. Results
4.1. Potential vorticity evolution

A comparison of the PV anomaly at the equivalent time of t = 5 QG time units in
the QG simulation and the NH simulations with ε = 0.25, 0.5 and 0.75 is presented in
figure 2, with c =10 in the top row and c = 100 in the bottom row. Note that, in the
simulations with ε = 0.25, this time corresponds to 400 buoyancy periods or 40 inertial
periods, plenty of time for exciting inertia–gravity waves. There is remarkably close
agreement in the PV fields at this time, even though Romax = 0.88 and Frmax =0.49 in
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QG ε = 0.25 ε = 0.5 ε = 0.75

Figure 2. Comparison of the PV anomaly fields � for various PV-based Rossby numbers ε
as labelled, at 5 QG time units. The top row is for c = 10 and the bottom row is for c =100.
The view and shading is as in figure 1, but only the inner eighth of the domain is shown.

QG ε = 0.25 ε = 0.5 ε = 0.75

Figure 3. Comparison of the QG and NH simulations with c = 10 at time t =20. The view
and shading is as in figure 2.

the case with ε = 0.75. Also, there is no significant dependence on the frequency ratio
c =N/f as can be seen by comparing images in the top and bottom rows.

In figure 3 we compare the PV anomaly at the later time of t =20 QG time units
for the case c =10. By this time, significant differences have developed, particularly
between the QG and the high-Rossby-number cases. Most of these differences arise
from balanced, ageostrophic motions, according to the results presented in § 4.3. These
ageostrophic motions modify the flow field induced by the vortices, and hence the
interactions between the vortices. Surprisingly, there is still some visible agreement
between the simulations, particularly in the size and shape of certain vortex structures
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Figure 4. Comparison of time-averaged kinetic energy spectra E(kh, kz) for the simulations
with ε = 0.25 (left column), ε = 0.5 (middle column) and ε = 0.75 (right column), and with
c =10 (top row) and c =100 (bottom row). The horizontal wavenumber kh is scaled by f/N .
The time average is taken between t = 10 to t = 20 QG time units.

(such as the dark anticyclonic one slightly left of centre near the bottom of the
domain). Perhaps most significantly, the ageostrophic motions do not lead to visible,
identifiable differences in the spatial structure of turbulence. The vortices appear
to have remained roughly isotropic, in the sense of retaining vertical to horizontal
aspect ratios H/L comparable to f/N . This can be quantified by examining kinetic
energy spectra. In figure 4 we plot the time-averaged spectra obtained from all six
simulations, where kh is the horizontal wavenumber scaled by f/N and kz is the
vertical wavenumber. The roughly circular shapes of the iso-contours confirm that
the fluid motion is approximately isotropic in the x, y and Nz/f coordinate space.
If the fluid motion were isotropic in the unscaled x, y and z coordinate space, the
iso-contours of kinetic energy in figure 4 would be elliptical, with aspect ratios of 10
and 100 in the top and bottom rows respectively.

The fact that the spectra for c = 100 are almost identical to those for c = 10 strongly
supports the common practice in atmosphere/ocean modelling of using a much finer
vertical grid spacing than the horizontal grid spacing (here f/N finer). This scaling
is necessary to accurately represent balanced motions and, arguably, unbalanced
motions as well.

4.2. Vertical velocity and isopycnal displacement

The vertical velocity field w is extraordinarily weak in a wide range of atmospheric
and oceanic motions, and is often taken to be a measure of IGW activity (see
Viúdez & Dritschel 2003). However, there can be a significant balanced component
(i.e. arising from the PV), particularly for small Ro and Fr , and when starting close
to a state of minimal IGW activity.
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ε = 0.25

w/ε2

wb/ε2

wi/ε2

ε = 0.5 ε = 0.75

Figure 5. Comparison of the full (top row), balanced (middle row) and unbalanced (bottom
row) components of the vertical velocity field (in a y = 0 cross-section) at 20 QG time units,
for c = 10, and for the PV-based Rossby numbers indicated. The plotted contours have values
±∆/2, ±3∆/2, . . ., where ∆ is the contour interval (negative contours have dashed lines,
positive contours have solid lines; the zero value is omitted). For the full and balanced cases
the contour interval is ∆= 0.0008. The unbalanced contour interval is 1/4th of the balanced
contour intervals.

Using the OPV balance procedure we diagnose the balanced vertical velocity field in
the NH simulations at the final time t = 20. In figure 5 we show the full w, balanced
wb and unbalanced wi =w − wb components of w for the three simulations with
c =10. Here, we show only a y = 0 (vertical) cross-section, but this is typical of other
cross-sections. Note that we have chosen the contour interval to be proportional to
ε2 to allow a comparison of the three Rossby numbers. The contour interval for wi is
four times smaller than that used for w and wb. For the two smallest Rossby number
cases there is close agreement in the largest magnitude structures in w, suggesting
these are balanced motions linked to the PV. There is little or no imbalance in
the smallest Rossby number case, though, as expected, the imbalance grows with
increasing Rossby number. The structures which appear in the unbalanced field for
the ε = 0.75 case are mostly small scale and most likely to be interfering patterns of
inertia–gravity waves. Most significantly, the unbalanced field is much smaller than
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w/ε2 wb/ε2 wi/ε2

Figure 6. Comparison of the full (left column), balanced (middle column) and unbalanced
(right column) components of the vertical velocity field at 20 QG time units in a y = 0
cross-section for the cases c = 10 (top row) and c = 100 (bottom row), all with ε =0.5. The
contour intervals for the full, balanced and unbalanced fields are ∆, ∆ and ∆/4 where
∆= 0.008/c.

the balanced field, indicating that the flow has remained close to balance over the
entire evolution.

In figure 6 we compare the full, balanced and unbalanced components of the
vertical velocity field for the case ε =0.5 at time t = 20, for both c = 10 and c = 100.
The c = 100 cases are very similar to the c = 10 cases. As with the PV field, varying
c does not qualitatively change the dynamics: the structure of the vertical velocity
field is the same. However the magnitude of the velocity field does vary, inversely
proportionally to c, consistent with QG scaling – see (2.16). Also there is less small-
scale structure for c = 100, suggesting that there is less IGW activity as c increases. In
fact, this is true only for earlier times in the evolution, as shown in figure 7, illustrating
the evolution of the r.m.s. imbalance in w as a percentage of the total r.m.s. vertical
velocity. Overall, the percentage of imbalance is reduced for the c =100 case, but the
difference may not be significant for these two (large) values of c.

We turn next to the isopycnal displacement field D = −b/N2, together with its
balanced Db and unbalanced components Di , in figure 8. Here, images for all three
Rossby numbers and c = 10 are displayed in the same format as used for w in
figure 5. Note that we have scaled D by ε, as suggested by the QG analysis, see (2.16).
This analysis is supported here by the close similarity of D or Db across Rossby
number. Dipolar structures are prominent in these fields (in a vertical cross-section).
Such structures are consistent with PV inversion and balance: cyclonic PV anomalies
squeeze the isopycnals locally, while anticyclonic PV anomalies spread them out.
Compared to the vertical velocity field w in figure 5, the displacement field D is
substantially smoother, and is evidently much more balanced – the contour interval
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Figure 7. Time evolution of the r.m.s. imbalance in w as a percentage of the total for c = 10
(solid line) and c = 100 (dashed line) when ε = 0.5.

used here for Di is only 1/50th of that used for D and Db. Quantitative results
presented next demonstrate that D, as well as the horizontal velocity uh, are much
more balanced than w throughout the evolution.

4.3. Unbalanced evolution and balance procedure comparison

In this section we quantify the imbalance in various fields as a function of time and
using various balance procedures. All results shown are for c = N/f =10. In figure 9
we show the percentage of r.m.s. imbalance in the fields u (top row), w (middle
row) and D (bottom row), obtained using OPV (bold solid line), NQG (thin solid
line) and linear QG balance (dashed line) for the three PV-based Rossby numbers
ε. As expected, the percentage of imbalance increases with ε, and the greatest
percentage of imbalance occurs in the vertical velocity field w. After the initial
adjustment (due to the imperfect initialization of the simulations), the percentage
of imbalance in the fields does not change substantially. There is a weak upward
trend in %wi , but a nearly level evolution of %ui and %Di . This small growth in
%wi contributes negligibly to the overall imbalance. For instance, in the energy norm
Ei = 〈|ui |2 + N 2D2

i 〉1/2/〈|u|2 + N 2D2〉1/2 (where 〈.〉 denotes the domain average), there
is no visible trace of w, see figure 10. Hence, these flows remain close to balance
throughout the evolution – even for O(1) Rossby numbers.

Next we examine how the various balance procedures compare. Overall, OPV
balance is most accurate, in the sense that it ascribes the greatest proportion of the
flow to balance, and thereby the smallest proportion to imbalance (see discussion
at the end of § 3.2). In this sense, linear QG balance is least accurate. Substantial
improvements can be obtained by taking into account second-order corrections in
Rossby number as in QG+1 balance and in NQG balance. We emphasize that
such improvements are likely to be greatest for flows which are carefully initialized
and which do not contain large-amplitude IGWs. From this and previous work
(Dritschel & Viúdez 2007), it appears that careful initialization is sufficient to keep
IGWs weak, at least for PV-based Rossby numbers ε < 1 and for f/N � 1.

Comparing NQG and OPV balance, it is clear that while NQG balance is less
accurate it is still effective at capturing a significant proportion of the underlying
balance. There are only minor differences in OPV and NQG balance for %ui and
%Di; significant differences occur only for %wi .
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�/ε

�b/ε

�i/ε

ε = 0.25 ε = 0.5 ε = 0.75

Figure 8. Comparison of the full (top), balanced (middle) and unbalanced (bottom)
components of the displacement field D (in a y = 0 cross-section) at 20 QG time units
for c = 10 and for the PV-based Rossby numbers indicated. The contour intervals for the
full and balanced fields are ∆= 0.008. Here, the unbalanced contour interval is 1/50th of the
balanced contour intervals.

Finally, it is instructive to examine how the use of the iteration in NQG balance
improves the estimate of balance. In figure 11 we plot the time-averaged r.m.s.
percentage of imbalance of u, w and D versus the number of iterations used. As we
increase the number of iterations, the percentage of imbalance decreases markedly
in all cases, saturating around 4 or 5 iterations. Even just a few iterations results in
a large percentage reduction in imbalance, by as much as 20% in some cases (for
instance, %ui reduces from 25% to 1.5% for ε = 0.75). Hence, iteration improves
accuracy. The significance of this improvement is further illustrated in figure 12 for
the displacement field at the final time and at the highest Rossby number. In the NQG
procedure with only two iterations, the ‘imbalance’ appears rather to be mostly the
balance it has failed to capture, here ageostrophic corrections associated with the PV
anomalies. The converged NQG procedure is much closer to the OPV procedure but
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Figure 9. The r.m.s. imbalance as a percentage of the total fields obtained using OPV balance
(bold solid line), NQG balance (thin solid line) and linear QG balance (dashed line) for
u (top row), w (middle row) and D (bottom row), and for ε = 0.25 (left column), ε = 0.5
(middle column) and ε =0.75 (right column). The percentage of imbalance %χi is defined by
100 ||χi ||rms/||χ ||rms for a field χ . Note that logarithmic scales (to the base 10) are used for
%ui and %Di to distinguish the OPV and NQG curves.

still shows a weak remnant of apparently balanced motions. These results underscore
the importance of using the exact PV in defining balance.

5. Discussion and conclusions
In this study we have examined the nature of ‘balance’, the control exerted by

potential vorticity, in turbulent rotating stratified flows at Rossby numbers Ro <∼ 1.
Overall we find that such flows remain close to balance if carefully initialized, even
when Ro =O(1) (see figure 10). For small Rossby numbers, the flows are described
well by the quasi-geostrophic model.
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Figure 10. Evolution of the imbalance energy norm, Ei , as determined from OPV balance
for ε = 0.25 (bold solid line), ε = 0.5 (thin solid line) and ε = 0.75 (dashed line).
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Figure 11. Time-averaged r.m.s. percentage of imbalance of u, w and D versus the number
of iterations used in the NQG balance procedure. The three curves are for ε =0.25 (bold solid
line), ε = 0.5 (thin solid line) and ε = 0.75 (dashed line).

We have found little dependence on the frequency ratio N/f , for N/f � 10, apart
from expected changes in the scales of various fields. IGW activity reduces slightly
when going from N/f =10 to N/f = 100. Reducing N/f below 10 is likely to enhance
both the balanced and unbalanced vertical velocities, and values of N/f of order
unity appear to result in strong IGW emission, of the type not seen in the present
study (W. Dewar, personal communication 2006). This remains to be investigated
systematically however.

We have developed a new procedure for diagnosing balance, ‘nonlinear quasi-
geostrophic (NQG) balance’, based on a quasi-geostrophic scaling of the non-
hydrostatic equations. This approach is broadly similar to the Nonlinear Normal
Mode Initialization procedure (Machenhauer 1977; Baer 1977; Baer & Tribbia 1977;
Leith 1980) and more closely-related to the QG+1 balance procedure of MSR99
derived for the hydrostatic equations. The crucial difference is that NQG balance
does not expand the definition of potential vorticity. We have shown that this
significantly improves the estimate of balance in rotating stratified flows, a result
which echoes previous findings in the shallow-water context (McIntyre & Norton
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OPV Converged NQG NQG with 2 iterations

�b/ε

�i/ε

Figure 12. Comparison of the balanced (top row) and unbalanced (bottom row) isopycnal
displacement obtained using OPV (left column), converged NQG (middle column) and NQG
with 2 iterations (right column) — now in a z =0 cross-section—at t = 20 time units for
ε = 0.75. The balanced contour interval is ∆= 0.008 and the unbalanced coutour interval is
∆/50.

2000; Ford et al. 2000; Mohebalhojeh & Dritschel 2000, 2001, 2004; Mohebalhojeh
2002).

Comparisons of OPV and NQG balance reveal that OPV balance is the most
accurate, capturing the greatest proportion of the balanced component of the full
dynamics (or equivalently attributing the smallest fraction of the flow to imbalance).
However NQG balance is only marginally less accurate, particularly with respect
to horizontal velocity and buoyancy, at considerably less numerical cost. Moreover,
the use of iteration to preserve the exact definition of PV substantially improves the
accuracy of NQG balance. The accuracy and efficiency of NQG balance suggests that
it could be useful not only as a diagnostic procedure but also as a balanced flow
evolution model, like QG, except employing the Rossby–Ertel PV as the prognostic
variable, i.e. solving (2.19b) in conjunction with the iterative method described in
§ 2.3. This is currently being explored.
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